Performance analysis of tabular nearest-neighbor encoding for joint image compression and ATR: I. Background and theory [3814-15] (2024)

    Key, G. / Schmalz, M. S. / Caimi, F. M. / SPIE

    • Neue Suche nach: Key, G.
    • Neue Suche nach: Schmalz, M. S.
    • Neue Suche nach: Caimi, F. M.
    • Neue Suche nach: SPIE
    • Neue Suche nach: Key, G.
    • Neue Suche nach: Schmalz, M. S.
    • Neue Suche nach: Caimi, F. M.
    • Neue Suche nach: Schmalz, M. S.
    • Neue Suche nach: SPIE

    In: Mathematics of data/image coding, compression, and encryption ; 115-126 ; 1999

    • ISBN:

      0819433004

    • ISSN:

      0277-786X

    • Aufsatz (Konferenz) / Print

    Wie erhalte ich diesen Titel?

    TIB vor Ort

    Nachweis Campus LUH

    TIB-Dokumentlieferung Kostenpflichtig bestellen

    Preisinformation

    Alternative Version

    Elektronische Version verfügbar

    Zitierformate anzeigen

    Exportieren, teilen und zitieren

    Preisinformation

    Bitte wählen Sie ihr Lieferland und ihre Kundengruppe

    * Pflichtfeld

    • Titel:

      Performance analysis of tabular nearest-neighbor encoding for joint image compression and ATR: I. Background and theory [3814-15]

    • Beteiligte:

      Key, G. ( Autor:in ) / Schmalz, M. S. ( Autor:in ) / Caimi, F. M. ( Autor:in ) / Schmalz, M. S. / SPIE

    • Kongress:

      Conference; 2nd, Mathematics of data/image coding, compression, and encryption ; 1999 ; Denver, CO

    • Erschienen in:

      Mathematics of data/image coding, compression, and encryption ; 115-126

      PROCEEDINGS- SPIE THE INTERNATIONAL SOCIETY FOR OPTICAL ENGINEERING ; 3814 ; 115-126

    • Verlag:

      SPIE

      • Neue Suche nach: SPIE
    • Erscheinungsdatum:

      01.01.1999

    • Format / Umfang:

      12 pages

    • ISBN:

      0819433004

    • ISSN:

      0277-786X

    • Medientyp:

      Aufsatz (Konferenz)

    • Format:

      Print

    • Sprache:

      Englisch

    • Schlagwörter:

      mathematics , data/image coding , compression

    • Datenquelle:

      British Library Conference Proceedings

    © Metadata Copyright the British Library Board and other contributors. All rights reserved.

    Inhaltsverzeichnis Konferenzband

    Die Inhaltsverzeichnisse werden automatisch erzeugt und basieren auf den im Index des TIB-Portals verfügbaren Einzelnachweisen der enthaltenen Beiträge. Die Anzeige der Inhaltsverzeichnisse kann daher unvollständig oder lückenhaft sein.

    2

    Adaptive algorithm for generating optimal bases for digital images

    Dreisigmeyer, David / Kirby, Michael J. et al. | 1999

    Elektronische Ausgabe

    2

    Adaptive algorithm for generating optimal bases for digital images [3814-01]

    Dreisigmeyer, D. / Kirby, M. J. / SPIE et al. | 1999

    Gedruckte Ausgabe

    13

    Truncated Baker transformation and its extension to image encryption [3814-02]

    Miyamoto, M. / Tanaka, K. / Sugimura, T. / SPIE et al. | 1999

    Gedruckte Ausgabe

    13

    Truncated Baker transformation and its extension to image encryption

    Miyamoto, Masaki / Tanaka, Kiyoshi / Sugimura, Tatsuo et al. | 1999

    Elektronische Ausgabe

    26

    Information hiding using random sequences

    Kim, Jang-Hwan / Kim, Kyu-Tae / Kim, Eun-Soo et al. | 1999

    Elektronische Ausgabe

    26

    Information hiding using random sequences [3814-04]

    Kim, J.-H. / Kim, K.-T. / Kim, E.-S. / SPIE et al. | 1999

    Gedruckte Ausgabe

    36

    Transmission of digital chaotic and information-bearing signals in optical communication systems [3814-05]

    Gonzalez-Marcos, A. P. / Martin-Pereda, J. A. / SPIE et al. | 1999

    Gedruckte Ausgabe

    36

    Transmission of digital chaotic and information-bearing signals in optical communication systems

    Gonzalez-Marcos, Ana P. / Martin-Pereda, Jose A. et al. | 1999

    Elektronische Ausgabe

    43

    Unequal error protection for H.263 video over indoor DECT channel

    Abrardo, Andrea / Barni, Mauro / Garzelli, Andrea et al. | 1999

    Elektronische Ausgabe

    43

    Unequal error protection for H.263 video over indoor DECT channel [3814-07]

    Abrardo, A. / Barni, M. / Garzelli, A. / SPIE et al. | 1999

    Gedruckte Ausgabe

    52

    Results using an alternative approach to channel equalization using a pattern classification strategy

    Caimi, Frank M. / Hassan, Gamal A. et al. | 1999

    Elektronische Ausgabe

    52

    Results using an alternative approach to channel equalization using a pattern classification strategy [3814-18]

    Caimi, F. M. / Hassan, G. A. / SPIE et al. | 1999

    Gedruckte Ausgabe

    62

    Method for JPEG standard progressive operation mode definition script construction and evaluation [3814-09]

    Minguillon, J. / Pujol, J. / SPIE et al. | 1999

    Gedruckte Ausgabe

    62

    Method for JPEG standard progressive operation mode definition script construction and evaluation

    Minguillon, Julian / Pujol, Jaume et al. | 1999

    Elektronische Ausgabe

    73

    EBLAST: efficient high-compression image transformation: I. Background and theory

    Schmalz, Mark S. / Ritter, Gerhard X. / Caimi, Frank M. et al. | 1999

    Elektronische Ausgabe

    73

    EBLAST: efficient high-compression image transformation: I. Background and theory [3814-10]

    Schmalz, M. S. / Ritter, G. X. / Caimi, F. M. / SPIE et al. | 1999

    Gedruckte Ausgabe

    86

    Trends in lossless image compression: adaptive vs. classified prediction and context modeling for entropy coding [3814-12]

    Aiazzi, B. / Alparone, L. / Baronti, S. / SPIE et al. | 1999

    Gedruckte Ausgabe

    86

    Trends in lossless image compression: adaptive vs. classified prediction and context modeling for entropy coding

    Aiazzi, Bruno / Alparone, Luciano / Baronti, Stefano et al. | 1999

    Elektronische Ausgabe

    98

    Mapping of image compression transforms to reconfigurable processors: simulation and analysis [3814-14]

    Caimi, F. M. / Schmalz, M. S. / Ritter, G. X. / SPIE et al. | 1999

    Gedruckte Ausgabe

    98

    Mapping of image compression transforms to reconfigurable processors: simulation and analysis

    Caimi, Frank M. / Schmalz, Mark S. / Ritter, Gerhard X. et al. | 1999

    Elektronische Ausgabe

    115

    Performance analysis of tabular nearest-neighbor encoding for joint image compression and ATR: I. Background and theory

    Key, Gary / Schmalz, Mark S. / Caimi, Frank M. et al. | 1999

    Elektronische Ausgabe

    115

    Performance analysis of tabular nearest-neighbor encoding for joint image compression and ATR: I. Background and theory [3814-15]

    Key, G. / Schmalz, M. S. / Caimi, F. M. / SPIE et al. | 1999

    Gedruckte Ausgabe

    127

    Performance analysis of tabular nearest-neighbor encoding for joint image compression and ATR: II. Results and analysis

    Key, Gary / Schmalz, Mark S. / Caimi, Frank M. et al. | 1999

    Elektronische Ausgabe

    127

    Performance analysis of tabular nearest-neighbor encoding for joint image compression and ATR: II. Results and analysis [3814-19]

    Key, G. / Schmalz, M. S. / Caimi, F. M. / SPIE et al. | 1999

    Gedruckte Ausgabe

    143

    MTF as a quality measure for compressed images transmitted over computer networks [3814-16]

    Hadar, O. / Stern, A. / Huber, M. / Huber, R. / SPIE et al. | 1999

    Gedruckte Ausgabe

    143

    MTF as a quality measure for compressed images transmitted over computer networks

    Hadar, Ofer / Stern, Adrian / Huber, Merav / Huber, Revital et al. | 1999

    Elektronische Ausgabe

    155

    Comparison of wavelet and Karhunen-Loeve transforms in video compression applications [3814-17]

    Musatenko, Y. S. / Soloveyko, O. M. / Kurashov, V. N. / SPIE et al. | 1999

    Gedruckte Ausgabe

    155

    Comparison of wavelet and Karhunen-Loeve transforms in video compression applications

    Musatenko, Yurij S. / Soloveyko, Olexandr M. / Kurashov, Vitalij N. et al. | 1999

    Elektronische Ausgabe

    Wie erhalte ich diesen Titel?

    TIB vor Ort

    Nachweis Campus LUH

    TIB-Dokumentlieferung Kostenpflichtig bestellen

    Preisinformation

    Alternative Version

    Elektronische Version verfügbar

    Zitierformate anzeigen

    Exportieren, teilen und zitieren

    Performance analysis of tabular nearest-neighbor encoding for joint image compression and ATR: I. Background and theory [3814-15] (2024)

    FAQs

    How does nearest neighbor search work? ›

    k-nearest neighbor search identifies the top k nearest neighbors to the query. This technique is commonly used in predictive analytics to estimate or classify a point based on the consensus of its neighbors. k-nearest neighbor graphs are graphs in which every point is connected to its k nearest neighbors.

    What is the approximate nearest neighbor algorithm? ›

    An approximate nearest neighbor search algorithm is allowed to return points, whose distance from the query is at most c times the distance from the query to its nearest points. The appeal of this approach is that, in many cases, an approximate nearest neighbor is almost as good as the exact one.

    Can k-NN be used for high dimensional data? ›

    KNN's performance can degrade with very large datasets and high-dimensional spaces. It requires calculating distances for all instances in the training set, which can be computationally intensive.

    What is the nearest neighbors algorithm? ›

    The k-nearest neighbors (KNN) algorithm is a non-parametric, supervised learning classifier, which uses proximity to make classifications or predictions about the grouping of an individual data point. It is one of the popular and simplest classification and regression classifiers used in machine learning today.

    What is the best algorithm for Neighbours search? ›

    Popular ways to calculate nearest neighbor
    • K-nearest neighbors (KNN) The goal of KNN is usually to classify some piece of data against a large set of labeled data. ...
    • Approximate Nearest Neighbor (ANN) ...
    • Fixed radius nearest neighbor. ...
    • Partitioning with k-dimensional tree(k-d tree)
    Jan 12, 2024

    How to interpret nearest neighbour analysis? ›

    The scaling for identifying the distribution pattern is given below (Figure-2). If Rn value is close to 0 the distribution pattern is considered as clustered; if around 1.00 (. 5 to 1.5) it is Random;if Rn approaches towards 2.0, the pattern is uniform and if very close to 2.15 (the maximum) is perfectly Uniform.

    Can KNN handle large datasets? ›

    The KNN algorithm does not work well with large datasets. The cost of calculating the distance between the new point and each existing point is huge, which degrades performance. Feature scaling (standardization and normalization) is required before applying the KNN algorithm to any dataset.

    What is the curse of dimensionality in K nearest Neighbours? ›

    The curse of dimensionality in the k-NN context basically means that Euclidean distance is unhelpful in high dimensions because all vectors are almost equidistant to the search query vector (imagine multiple points lying more or less on a circle with the query point at the center; the distance from the query to all ...

    How to reduce dimensionality for KNN? ›

    To address this issue, techniques like Principal Component Analysis (PCA) and Convolutional Neural Networks (CNNs) can be used to reduce the dimensionality of the feature vectors and extract more meaningful features that can improve the accuracy of the KNN algorithm.

    Why is nearest neighbor a lazy algorithm? ›

    K-NN is a lazy learner because it doesn't learn a discriminative function from the training data but “memorizes” the training dataset instead. For example, the logistic regression algorithm learns its model weights (parameters) during training time. In contrast, there is no training time in K-NN.

    When to use k nearest neighbor? ›

    KNN is most useful when labeled data is too expensive or impossible to obtain, and it can achieve high accuracy in a wide variety of prediction-type problems. KNN is a simple algorithm, based on the local minimum of the target function which is used to learn an unknown function of desired precision and accuracy.

    What are the disadvantages of KNN? ›

    The KNN algorithm has limitations in terms of scalability and the training process. It can be computationally expensive for large datasets, and the memory requirements can be significant. Additionally, KNN does not explicitly learn a model and assumes equal importance of all features.

    How does nearest neighbor matching work? ›

    Nearest neighbor matching is also known as greedy matching. It involves running through the list of treated units and selecting the closest eligible control unit to be paired with each treated unit.

    How does nearest neighbor classifier works? ›

    KNN classifier is a machine learning algorithm used for classification and regression problems. It works by finding the K nearest points in the training dataset and uses their class to predict the class or value of a new data point.

    Can your neighbor see your search history? ›

    Yes, they can.

    It is best to use security tools: VPNs, HTTPS proxies, and the Tor browser to keep your searches private from them.

    Top Articles
    Latest Posts
    Article information

    Author: Kimberely Baumbach CPA

    Last Updated:

    Views: 5827

    Rating: 4 / 5 (61 voted)

    Reviews: 92% of readers found this page helpful

    Author information

    Name: Kimberely Baumbach CPA

    Birthday: 1996-01-14

    Address: 8381 Boyce Course, Imeldachester, ND 74681

    Phone: +3571286597580

    Job: Product Banking Analyst

    Hobby: Cosplaying, Inline skating, Amateur radio, Baton twirling, Mountaineering, Flying, Archery

    Introduction: My name is Kimberely Baumbach CPA, I am a gorgeous, bright, charming, encouraging, zealous, lively, good person who loves writing and wants to share my knowledge and understanding with you.